

Technical solutions offered by Messer for the Glass Industry

20th of November 2018 Gyula Palmai and Philipp Schindler

Content

Overview

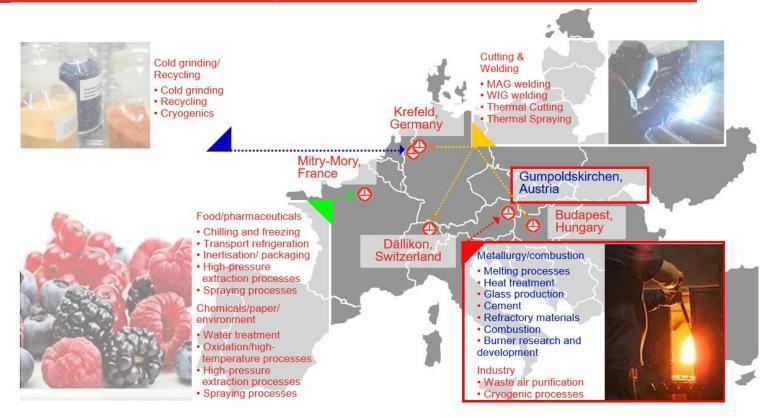
- Company Profile
- Oxipyr Burner technology
- Case studies
 - Emergency and temporary solutions
 - Enrichment
 - Temporary conversion to Oxyfuel
 - Oxyboosting
 - Oxyfuel vs. Oxyfuel
 - Feeder project

Specialist in Industrial Gases

Company

Messer is the largest owner-managed industrial gas company in the world.

Provides not only gases but tailor made Oxipyr® combustion solutions for the customers


More than 60 locations in over 34 Countries

Application Technology: Competence Centers

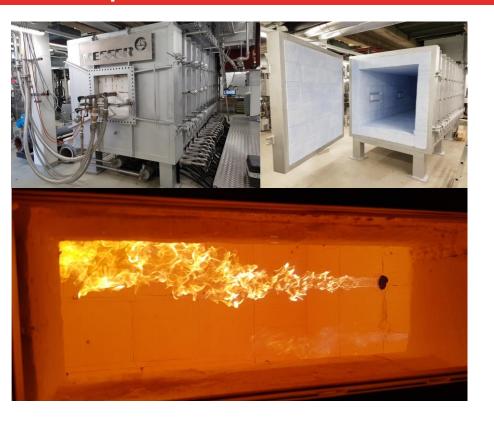
Competence Center for HTP

Located in Gumpoldskirchen, Austria, since March 2004

Competence Center for HTP

Gumpoldskirchen – burner chamber #1

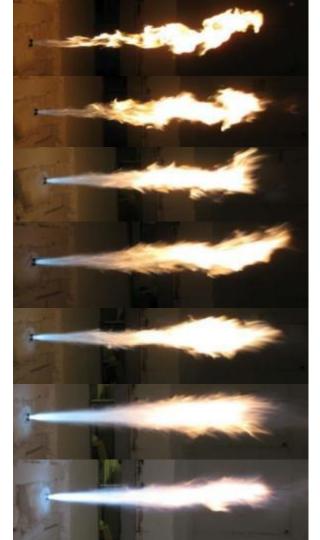
- Inner dimensions: 2,5m x 1,25m x 1,25m
- Maximum burner power 300-500 kW (gaseous fuels only)
- Temperatures up to 1600 °C
- Optional water cooled lances for temperature adjustment
- Off-gas measurement: O₂, CO, CO₂, NO, NO₂
- 21-100% O₂ in oxidator, all gas mixtures possible


Feeder VO3

- A recreation of a feeder for the glass industry
- Maximum burner power 20 kW (max. 20 natural gas burners)
- Temperatures up to 1300 °C
- Around 50 thermocouples
- Comparison of oxyfuel vs. airfuel burners for the glass industry

Slide 7 Demuth, May 2018 Part of the Messer World ■

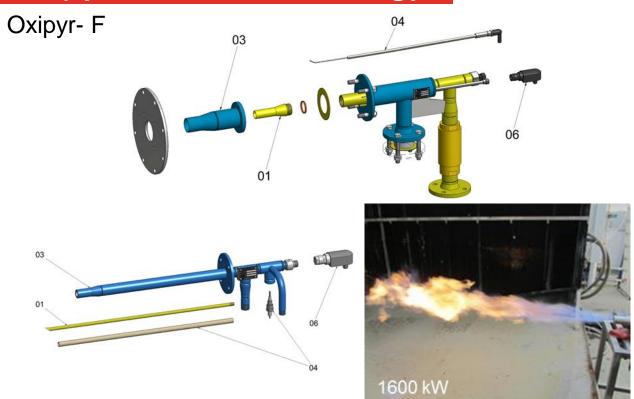
Competence Center for HTP

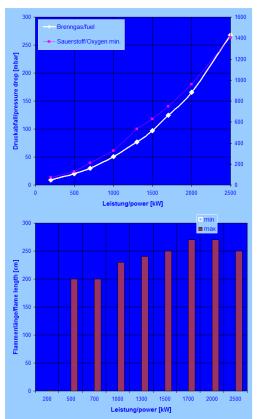

TU Graz (IWT "Institut für Wärmetechnik") – burner chamber #2

- Inner dimensions: 4,5m x 1,25m x 1,25m
- Maximum burner power 1200 kW
- Also usable for liquid fuels
- Temperatures up to 1430 °C
- Water cooled lances for temperature adjustment
- Furnace pressure regulation
- Off-gas measurement
- 21-100% O₂ in oxidator
- Around 25 thermocouples
- Under finalization

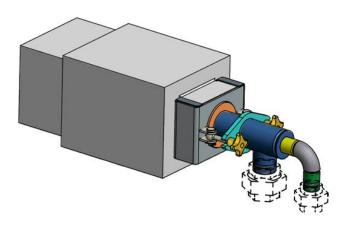
Oxipyr Burner technology

Tailormade burner solutions

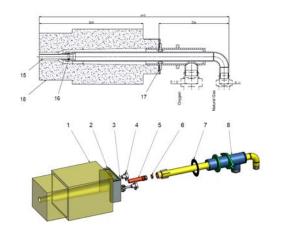

- Adjusted to each furnace and mounting
- Adjusted to needed burner power
- Flame length adjusted to furnace
- High heating area can be defined
- Flame length similar over turn down ratio

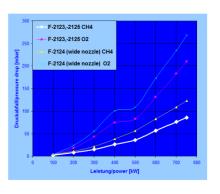


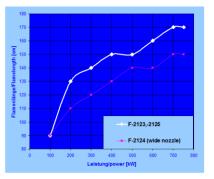
Oxipyr Burner technology

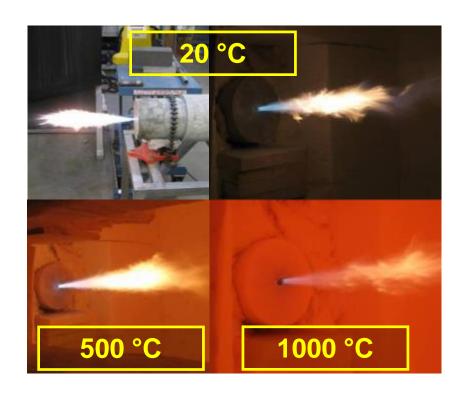


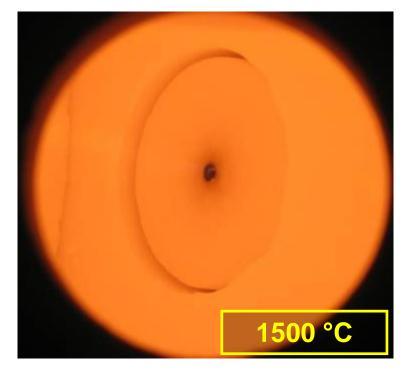
Slide 10 Demuth, May 2018 Part of the Messer World 💼


Oxipyr Burner technology

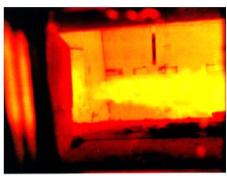

Oxipyr- F



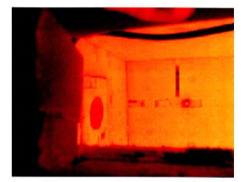




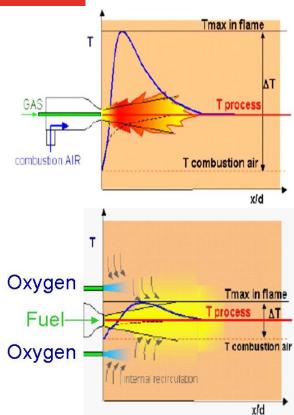
Oxipyr - F – flameless/diluted combustion



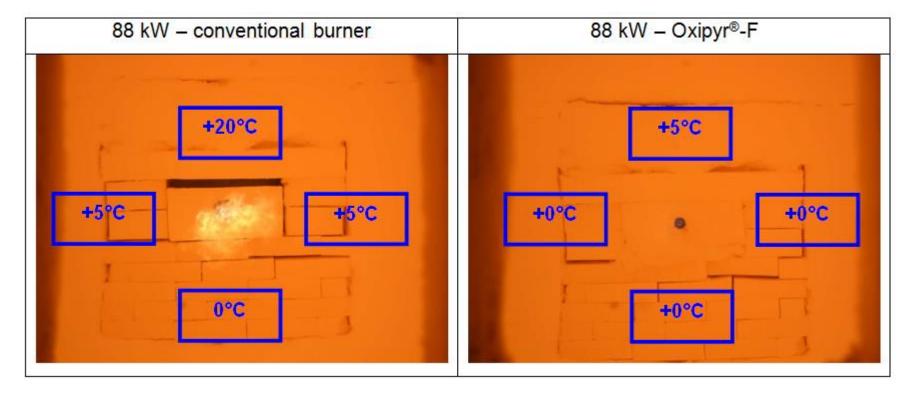
Oxipyr - F - flameless/diluted combustion



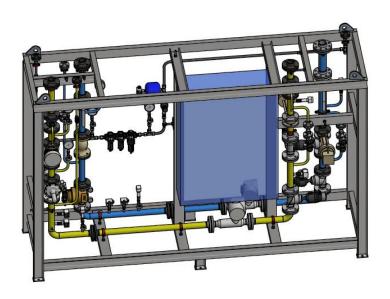
Advantages

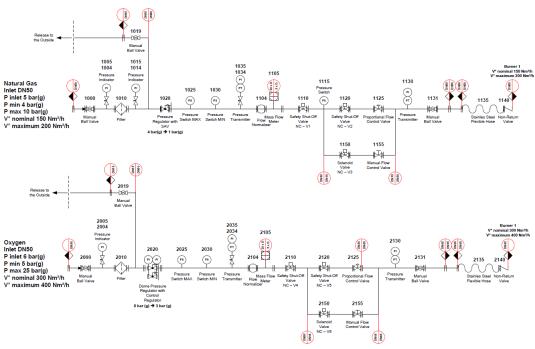

- High impulse
- Long flame hot spot near the end of the flame
- High off-gas recirculation
- Low flame peak temperature
- Homogeneous temperature distribution = no hot spots

Conventional Flame - 1.5 MW



Diluted Flame - 1.5 MW

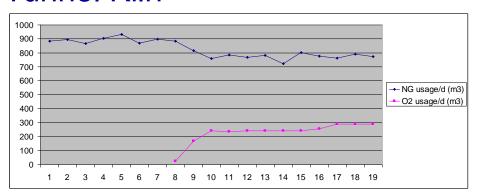

Oxipyr - F - flameless/diluted combustion



Oxipyr – NG/O2 Regulations

Slide 15 Demuth, May 2018 Part of the **Messer** World

Case studies



- Emergency and temporary solutions
 - Enrichment
 - Temporary conversion to Oxyfuel
 - Oxyboosting

Enrichment

MESSER Gases for Life

Tunnel Kiln

Average of Comb.Air 12-18.11.2012	9 319	Nm3/d
Average of NG 12-18.11.2012	893	Nm3/d
Average of NG 25-30.11.2012	771	Nm3/d
Average of O2 25-30.11.2012	267	Nm3/d
Average of Comb.Air 25-30.11.2012	5 725	Nm3/h
Savings	14	%

Slide 17 Demuth, May 2018 Part of the **Messer** World 💼

Enrichment

Glass Tank

Basic data:	
Furnace area:	48 m²
Production:	158 t/d
Specific pull:	3,3 t/m²/d
Fuel:	Heavy oil
Air preheating temp:	1250°C
Installed electric boost:	1300 kW

 Oxygen Enrichment of the combustion air through the regenerator up to 23,4%

Problems

- Checkers in the right side regenerator chamber collapsed!
- Not enough air to combust the required amount of fuel.
- Air preheat temperature in the right side chamber dropped from 1250 °C to 1050 °C!
- production reduced to 142 t/d

Result

- Combustion air quantity was decreased by 14%
- Production was restored to the original level

Enrichment

Glass Tank

Implementation

Implementation of the Regulation into the Control system

Regulation

 O2 Regulation Panel delivered by Messer

Oxygen lance

 O2 lance and flexible hoses installed by Messer

Temporary conversion to Oxy-fuel

Glass Tank

Basic data:	
Furnace area:	56,4 m²
Production:	120 t/d
Specific pull:	2,13 t/m²/d
Fuel:	NG
Glass temperature	1380°C
Total burner capacity:	7000 kW

- Installation of 4 tailormade Oxipyr Burners
- Burners designed to fit in existing burner blocks

Problems

- The separation wall between the regenerator chambers collapsed.
- Efficiency of air preheating reduced, production capacity must be reduced.
- While rebuilding the regenerator production should be continued with approx. 75 t/day

Result

- During the "full Oxyfuel" operation of the glass furnace they were able to reach a constant pull above 75 t/day
- The temporary Oxyfuel operation lasts for 1 month without any technical or quality problems

Part of the **Messer** World

Temporary conversion to Oxy-fuel

Glass Tank

The original burners Tank and evaporator erected

Making piping

The new oxy-fuel burners

Skid and control

Temporary chimney

New burners installed

Closing the throat

Temporary conversion to Oxy-fuel

MESSER Gases for Life

Glass Tank

Oxy-fuel burners under operation

Parameters on the screen

New checkers in progress

Job is finished

Oxyboosting

Glass Tank

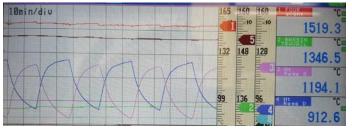
Basic data:	
Glass Type:	Optical
Furnace area:	33 m²
Production:	80 t/d
Specific pull:	2,42 t/m²/d
Fuel:	NG
Melting temperature:	1550°C
Installed electric boost:	770 kW
Total burner capacity:	4400 kW

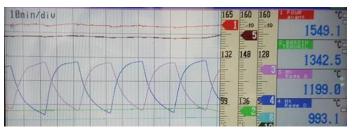
- First step, enrichment of combustion air up to 36% for 5 Months
- Second step, additional Oxyboosting, @ the hotspot with two Burners. (800 kW)

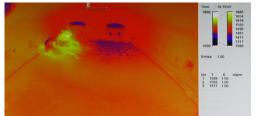
Problems

- Both regenerator chambers where clogged, therefore capacity decreased
- Furnace pressure was to high
- Production decreased to 73 t/day

Result


- Production could be restored to the original level
- Due to lower Offgas volume the furnace pressure was decreased
- Assymetric operation of the regenerator chambers was reduced
- Electric boost has been reduced by 80 kW


Oxyboosting



Glass Tank

Slide 24 Demuth, May 2018 Part of the Messer World 💼

Oxyboosting |

Glass Tank

Basic data:	
Glass Type:	C-Glass
Furnace area:	91 m²
Production:	270 t/d
Specific pull:	3,0 t/m²/d
Fuel:	LHV NG
Melting temperature:	1450°C
Total burner capacity:	15100 kW

- Preparation of all the needed equipment to change to full Oxy-fuel (Regulations, Burners and Bricks)
- As a first step installing 2 pieces of Oxy-fuel burners (substituting 4 Air-fuel burners)

Problems

- Recuperator was damaged during the loss of electric power supply
- Not enough air to combust the required amount of fuel.
- Preheat temperature decreased
- Further degradation of the Recuperator performance is expected

Result

- Production was kept at the original level
- Combustion air volume was reduced to a value which was possible to get through the damaged recuperator

Part of the **Messer** World

Oxyboosting

MESSER Gases for Life

Glass Tank

Slide 26 Demuth, May 2018 Part of the Messer World 💼

Oxy-fuel vs. Oxy-fuel

Glass Tank

Basic data:	
Glass Type:	Solar Glass
Furnace area:	178 m²
Production:	270 t/d
Specific pull:	1,52 t/m²/d
Fuel:	NG
Melting temperature:	1500°C
Total burner capacity:	15500 kW
Electric boosting:	1690 kW

Solution

- Preparation of all the needed equipment to change Burners and Bricks
- Changing 10 pieces of flat flame burners to Oxipyr-F burners

Problems

- Short life time of the existing Burnerbricks (Flat flame burners)
- Reduction of NOX desirable

Result

- Easy mounting of burnerbricks and burners during continous full production because of tailormade solution
- Reduction of NOX by 30%
- Reduction of Oxygen consumption by 2 %

Slide 27 Demuth, May 2018 Part of the Messer World

Oxy-fuel vs. Oxy-fuel

Part of the **Messer** World

Technical solutions offered by Messer for the Glass Industry

Thank You for Your attention!

